

MORE CALCULATIONS- SEPARATES

	Page	Exam
Content	Sep	paper
ATOMS ECONOMY AND YIELD (HT)		
Even though no atoms are gained or lost in a chemical reaction, it isn't always possible to obtain the calculated amount of a product because: • the reaction may not go to completion because it is reversible • some of the product may be lost when it is separated from the reaction mixture • some of the reactants may react in ways different to the expected reaction. The amount of a product obtained is known as the yield. When compared with the maximum theoretical amount as a percentage, it is called the percentage yield. % Yield = $\frac{Mass of product actually made}{Maximum theoretical mass of product} x 100$	49	1
The atom economy (atom utilisation) is a measure of the amount of starting materials that end up as useful products. It is important for sustainable development and for economic reasons to use reactions with high atom economy. The percentage atom economy of a reaction is calculated using the balanced equation for the reaction as follows:	48	1
desired product from equation Sum of relative formula masses of all reactants from equation		

Using concentrations of solutions in mol/dm ³ (HT)		
The concentration of a solution can be measured in mol/dm ³ .	46-47	1
The amount in moles of solute or the mass in grams of solute in a given volume of solution can be calculated from its concentration in		
If the volumes of two solutions that react completely are known and the concentration of one solution is known, the concentration of the		
other solution can be calculated.		
Use amount of substance in relation to volume of gases (HT)		
Final encounts in makes of second second the second under the second second itizes of temperature and measures	40.47	4
Equal amounts in moles of gases occupy the same volume under the same conditions of temperature and pressure.	46-47	1
i ne volume of one mole of any gas at room temperature and pressure (20 °C and 1 atmosphere pressure) is 24 dm°.		
The volumes of assecus reactants and products can be calculated from the balanced equation for the reaction		
The volumes of gaseous reactants and products can be calculated from the balanced equation for the reaction.		